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Uncovering RNAi mechanisms in plants: Biochemistry enters the foray
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Abstract In plants, the RNA interference (RNAi) machinery
responds to a variety of triggers including viral infection, trans-
genes, repeated elements and transposons. All of these triggers
lead to silencing outcomes ranging from mRNA degradation to
translational repression to chromatin remodeling. Thus, plants
offer us a potentially unique opportunity to understand the full
range of RNAi effector mechanisms. In this review, we discuss
the recent developments in our understanding of plant RNAi
mechanisms from a biochemical perspective.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

RNA silencing is a general phenomenon in eukaryotic

organisms and plays important roles in diverse biological pro-

cesses including developmental regulation, antiviral defense

and chromatin remodeling [1–5]. The key features of RNA

silencing include the production of �21–25 nt small RNAs

by Dicer [6] and the formation of Argonaute (AGO)-contain-

ing RNA-induced silencing complexes (RISCs) that directly

carry out gene silencing at the transcriptional or post-tran-

scriptional level [7–9].

In plants, there are three RNA silencing pathways [2]. The

first comprises post-transcriptional gene silencing (PTGS)

mediated by �21 nt small interfering RNAs (siRNAs) that

are processed from double-stranded RNAs (dsRNAs). The

source of dsRNAs includes replication intermediates of plant

RNA viruses, transgenic inverted repeats, and products of

RNA-dependent RNA polymerases (RdRps). The second

pathway involves a class of endogenous small RNAs, microR-

NAs (miRNAs). MiRNAs are generated by Dicer-like 1
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(DCL1) from miRNA precursors that are transcribed from

miRNA genes. MiRNAs downregulate gene expression

through base-pairing to target mRNAs, leading to either the

degradation of mRNAs or the inhibition of translation or

both. The third pathway is transcriptional gene silencing

(TGS) that is associated with siRNA-directed chromatin mod-

ifications including DNA and histone methylation.

Our understanding of RNA interference (RNAi) pathways

in plants has mainly derived from genetic studies and from

extrapolating biochemical properties of RNAi components

in animals. However, efforts are being made to bring genetic

and biochemical approaches together in plants [10–14]. In

this review, we summarize the recent findings related to

RNAi mechanisms in plants, and discuss the roles of major

protein families in RNAi pathways from a biochemical per-

spective.
2. Plant Dicer-like proteins and biogenesis of small RNAs

The SIN1/SUS1/CAF gene (now renamed Dicer-like 1,

DCL1) was isolated through independent genetic screens for

Arabidopsis mutants with abnormal embryo, ovule and flower

development [15]. SIN1/SUS1/CAF was shown to encode a

conserved multidomain protein containing two RNase III do-

mains in 1999 [16]. In the same year, small RNAs were de-

tected in various plant PTGS systems [17]. However, we

remained blind to the connection between DCL1 and small

RNA production until the discovery that its homologue in

Drosophila, Dicer-1, processes dsRNA substrates into �22 nt

small RNAs [6]. The Chen and Bartel labs subsequently cloned

miRNAs from Arabidopsis and showed that their accumula-

tion was greatly reduced in caf (or dcl1-9) mutants, suggesting

a role for DCL1 in miRNA metabolism [18,19]. However, in

the same mutant, neither PTGS nor siRNA production from

dsRNA was blocked [20]. This outcome implied that Arabidop-

sis might have distinct DCLs that are responsible for the pro-

duction of miRNAs and siRNAs.

The idea that a plant might contain multiple Dicer activities

was first indicated by the observation of discrete size classes of

small RNAs. Hamilton et al. showed that two size-classes (21–

22 and 24–26 nt) siRNAs were produced from a transgene

whereas only long siRNAs were generated from endogenous

retroelements. The short siRNAs correlated with sequence-

specific mRNA degradation while the long siRNAs were

dispensable for mRNA degradation but correlated with

methylation of homologous DNA [21]. Subsequent biochemi-

cal studies showed that wheat germ and cauliflower extracts
blished by Elsevier B.V. All rights reserved.

mailto:qiy@cshl.edu 
mailto:�hannon@cshl.edu 


5900 Y. Qi, G.J. Hannon / FEBS Letters 579 (2005) 5899–5903
contain Dicer-like enzymes that convert dsRNA into these

same two size-classes of siRNAs [11]. Arabidopsis extracts also

contain two major activities producing 21 and 24 nt siRNAs

[12]. Biochemical fractionation suggested that the two prod-

ucts are created by two distinct enzymatic complexes. The Ara-

bidopsis genome encodes four Dicer-like proteins, i.e., DCL1–4

[15]. Immunoaffinity purified DCL1 and DCL3 processed a

dsRNA substrate into 21 and 24 nt siRNAs, indicating that

DCL1 and DCL3 are directly responsible for the production

of the two size-classes of small RNAs, respectively. A dcl2-1

mutant still maintained both activities, suggesting that DCL2

is not the major enzyme that produces either 21 or 24 nt siR-

NAs. However, no one as yet has characterized the biochemi-

cal activity of DCL2. dcl3-1 extracts contained 21 nt siRNA-

generating activity, but lacked 24 nt siRNA-generating activ-

ity, indicating that DCL3 is either the sole or the predominant

enzyme that produces 24 nt siRNAs [12]. This biochemical

property of DCL3 is in full agreement with the genetic data

showing that accumulation of �24 nt siRNAs in vivo was sig-

nificantly decreased in dcl3-1, but not in dcl1-7 and dcl2-1 mu-

tants [22]. Intriguingly, in the dcl1-7 mutant, the accumulation

of 21 nt miRNAs was dramatically decreased [22]. However,

DCL1 immunoprecipitates from the mutant maintained the

small RNA-generating activity [12]. This suggests that the

P415S substitution in the helicase domain of DCL1 does not

abolish the small RNA processing activity, but may interfere

with the other functions of DCL1 in RNAi pathway. In Dro-

sophila, besides their involvement in small RNA biogenesis,

Dicers are also required for RISC formation [23–25]. Size

exclusion chromatography suggested that DCL1 and DCL3

reside in >660 and �440 kDa complexes, respectively [12].

Identification of the components of the complexes may reveal

if plant DCLs also have dual functions in both initiation and

execution stages of RNAi.

The biochemical mechanism by which Arabidopsis DCL1

and DCL3 measure and process dsRNA into two discrete

size-classes of small RNAs remains unclear. Dicer and

AGO share a conserved PAZ domain. Biochemical and crys-

tal structural analysis have indicated that the PAZ domain

in AGOs has a preference for single-stranded RNAs or dou-

ble-stranded RNAs with 3 0 overhangs [26–28]. It was shown

that human Dicer preferentially processes siRNAs from the

ends of dsRNAs [29]. In accord with the hypothesis that Di-

cer is an end-recognizing nuclease, mutations within the

PAZ domain of Dicer inhibit its activity, and inhibition is

more pronounced for dsRNAs with 3 0 overhangs than those

with blunt ends [30]. This suggests that Dicer recognizes the

3 0 overhang of a dsRNA substrate through its PAZ domain.

Zhang et al. suggested a model for human Dicer in which a

single dsRNA cleavage center is formed through intramolec-

ular dimerization of its two RNase III domains. Dicer

would then cleave the dsRNA �20 nt from its terminus,

making this measurement through recognition of 3 0 over-

hang by the PAZ domain [30]. Thus, the difference in size

between DCL1 and DCL3 products may arise from intrinsic

structural characteristics of these enzymes. Considering that

DCL1 and DCL3 share common domains including a

PAZ domain and two RNase III domains [15], the distinct

sizes of their products may be attributed to subtle difference

in conformation of the two DCLs. It also remains possible

that the size of products may be determined by factors that

associate with DCL1 and DCL3.
3. AGO1: an Arabidopsis Slicer

In animals, once generated by Dicer, siRNAs are loaded into

AGO-containing RISC to cleave their target mRNAs. In

mammals, through genetic, biochemical and structural analy-

ses, it was shown that Ago2 is the catalytic engine (Slicer) of

RISC, directly responsible for mRNA cleavage [26,31]. This

occurs through an intrinsic RNase motif formed by the PIWI

domain. PIWI bears close resemblance to two classes of nuc-

leases, namely the RNase H family and the transposases. Re-

cently, Rivas et al. showed that a characteristic Asp-Asp-His

(DDH) motif is essential for Slicer activity [32]. Unlike animals

where the majority of microRNAs operate through transla-

tional repression, the majority of the characterized plant miR-

NAs regulate their target genes through cleavage of target

mRNAs [33]. It was shown that wheat germ and Arabidopsis

extracts have RISC complexes that are competent in mRNA

cleavage [11,12]. However, the identity of the plant Slicer

was not known.

Arabidopsis contains at least 10 AGO proteins as candidates

for Slicer. However, genetic studies have elevated AGO1 as an

excellent Slicer candidate. As the founding member of the

AGO family [34], AGO1 was isolated through the genetic

screening for mutants with aberrant leaf morphology and

named after the small squid-like appearance of the mutant

plant [35]. AGO1 is required for PTGS [36]. In ago1 null mu-

tants, accumulation of miRNAs is decreased, which is accom-

panied by increased levels of miRNA target genes; while in

hypomorphic mutants, miRNA accumulation is not substan-

tially changed but target mRNA cleavage is comprised [37].

Recently, we showed that, in Arabidopsis, one trans-acting siR-

NA (ta-siRNA) and three miRNAs could be detected in

AGO1 immunoprecipitates, indicating that these ta-siRNA

and miRNAs and AGO1 associate in vivo. Such complexes

are competent for cleaving the target mRNAs of the ta-siRNA

and miRNAs in vitro [12]. Similar results were also obtained

using an Arabidopsis line expressing a tagged AGO1 [10].

Furthermore, a cleavage-competent RISC can also be reconsti-

tuted with immunopurified AGO1 and an exogenous single-

stranded siRNA in vitro. In combination with data from

genetic studies, these biochemical analyses strongly suggest

that AGO1 is a key component of Arabidopsis RISC and is

at least one of the Arabidopsis Slicers [10,12].

Intriguingly, AGO1 did not associate with any of three �24

nt siRNAs in vivo [10,12]; however, in the in vitro reconstitu-

tion system 24 nt siRNAs could be loaded into AGO1 immu-

noprecipitates to form cleavage-competent RISC [12]. This

suggests that distinctions within pathways in Arabidopsis

RNA silencing probably occur via formation of interactions

between complexes and not simply because specific AGOs in

effector complexes are unable to accept siRNAs of inappropri-

ate sizes. Attempts to assemble RISC with exogenous siRNA

duplexes have not been successful [11,12,14], most probably

due to the lack of an siRNA unwinding activity in plant

extracts [14].

Though most characterized plant miRNAs cleave their

target mRNAs, it was suggested that one miRNA, miR172,

functions predominantly as a translational repressor [38,39].

However, a study using an Arabidopsis line overexpressing

miR172 suggests that mRNA cleavage and translational

repression are similarly important in miR172 function [40]. Re-

cently, we showed that miR172 is associated with AGO1 and
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directs the cleavage of its target mRNA in vitro, albeit weakly

[12]. There is a G:U wobble at position 7 (counting from the 5 0

end of the miRNA). A change from G:U wobble to A:U pair

to create perfect complementarity within the targeting region

significantly increased the efficiency of the cleavage (Qi and

Hannon, unpublished result), suggesting that the low efficiency

of the mRNA cleavage mediated by miR172 may be attributed

to its imperfect basepairing to its target mRNA at this posi-

tion. This is consistent to the notion from in vivo studies that

mismatches at 5 0 region of miRNAs have a substantial impact

on target mRNA cleavage [40,41]. However, it still remains

possible that miR172 also joins another distinct RISC to carry

out its translational repression function. It is noteworthy that

the effect of other plant miRNAs on translation has not been

evaluated, and the question is still open as to how general it

is that a plant miRNA regulates gene expression by both cleav-

ing mRNA and repressing translation.
4. Other roles of AGO proteins in Arabidopsis

S. pombe has one AGO that is involved in both PTGS and

TGS [42]. However, animals have multiple AGO proteins that

seem to have distinct functions. For instance, in Drosophila, it

was shown that Ago1, but not Ago2 is required for miRNA

accumulation, whereas Ago2, but not Ago1 is required for siR-

NA function [43]. In humans, miRNAs and siRNAs associate

indiscriminately with Ago1–Ago4, however, only Ago2 has the

ability to cleave mRNA [31,44].

Arabidopsis has 10 AGO proteins [36,45], providing a great

potential for functional diversification. An alignment of Ara-

bidopsis AGOs with human Ago2 revealed that eight Arabidop-

sis AGOs (i.e., AGO1, AGO4, AGO5, AGO6, AGO7/ZIP,

AGO8, AGO9 and ZLL/PNH) have the DDH motif that char-

acterizes the catalytic active site of a Slicer [12,32]. This sug-

gests that Arabidopsis might have multiple other Slicers

besides AGO1. The large number of AGOs in Arabidopsis also

suggests that different AGOs might interact with different

subsets of miRNAs or other small RNAs to regulate genes

in specialized tissues or at particular developmental stages.

Supporting this idea, AGO7/ZIP is involved in the regulation

of vegetative developmental timing [46]; while ZLL/PNH has

a role in the regulation of central shoot meristem cell fate dur-

ing embryogenesis [47,48].

In plants, besides its role in post-transcriptional gene regula-

tion, RNAi can also direct chromatin modification in a se-

quence-specific manner. Two Arabidopsis AGOs have been

implicated in chromatin remodeling. AGO4 has been shown

to be required for maintenance of DNA methylation at several

endogenous loci: for de novo methylation at the FWA gene,

and for siRNA accumulation of a subset of endogenous loci

[49–51]. Besides its function in miRNA-directed mRNA cleav-

age, AGO1 also acts at chromatin level to regulate gene

expression [45,52,53]. It remains elusive precisely how small

RNAs guide chromatin modification at homologous sequences

in plants. Two models have been proposed for how small

RNAs recognize their target sites: direct RNA–DNA pairing

(DNA-recognition model) or pairing of small RNAs and a

nascent transcript from the target locus (RNA-recognition

model) [54,55]. Recent studies in fission yeast indicated that

RNAi-directed chromatin modification is coupled to RNA
polymerase II transcription [56,57], supporting the RNA-rec-

ognition model. Arabisopsis has evolved a distinct polymerase,

RNA polymerase IV, that is required for siRNA accumulation

and DNA methylation at some loci [58,59]. However, the pre-

cise role of RNA polymerase IV in the siRNA–DNA methyl-

ation loop remains unclear. In Arabidopsis, an earlier report

showed that miRNA binding sites in PHB and PHV mRNAs

are required for the methylation of their chromosomal loci

[60]. Given that PHB and PHB mRNAs are cleaved by

miR165/166, and that AGO4 contains a DDH motif that

might enable it to cleave, it is of great interest to test if a cleav-

age event is involved in small RNA-mediated chromatin mod-

ification.
5. The role of dsRBD proteins

The dsRNA-binding domain (dsRBD) [also known as

dsRNA-binding motif (dsRBM)] is responsible for many inter-

actions between proteins and RNA duplexes, and proteins

containing dsRBD have diverse functions [61].

DsRNAs are the triggers of RNAi, and many dsRBD pro-

teins have demonstrated roles in RNAi pathways. DsRBD do-

mains in Dicer and Drosha are probably involved in binding to

their dsRNA substrates [6,62], as supported by the fact that

deletion of dsRBD in human Dicer attenuates its activity

[30]. RDE-4, a dsRBD protein in Caenorhabditis elegans, inter-

acts with RDE-1 and DCR-1 and functions in the initial steps

of RNAi [63]. A potential RDE-4 homologue in Drosophila,

R2D2 interacts with DCR-2, and is the sensor for siRNA

asymmetry [64,65]. Another dsRBD protein, Pasha in Dro-

sophila or DGCR8 in humans each interacts with Drosha to

form the Microprocessor complex, which processes primary

miRNA transcripts into miRNA precursors (pre-miRNA)

[66,67]. In turn, Loquacious in Drosophila and TRBP in hu-

mans form complexes with Dicer and at least in flies Loqua-

cious appears specifically tasked for pre-miRNA processing

[68–70]. Thus, in humans and flies, the function of each Dicer

and Drosha is facilitated by a particular dsRBD protein. If this

holds true in Arabidopsis, dsRBD proteins may also be in-

volved in RNAi through interacting with DCLs.

Besides DCLs, there are 16 dsRBD proteins in Arabidopsis,

two of which have demonstrated roles in RNAi. HYL1 is a po-

tential homologue of RDE-4 in C. elegans and R2D2 in Dro-

sophila. However, HYL might function differently from these

proteins. While RDE-4 and R2D2 play roles in the siRNA

pathway through interacting with Dicers that are localized in

cytoplasm [63–65], HYL1 is a nuclear dsRBD protein required

for the accumulation of miRNA but dispensable for post-tran-

scriptional transgene silencing (S-PTGS) [71,72]. HYL1 resides

in a �300 kDa complex in vivo [71], but its interacting partners

await identification. In vitro, HYL1 can interact with DCL1

[73], suggesting that HYL1 might assist in miRNA biogenesis.

Another dsRBD protein, HEN1, is also required for the miR-

NA accumulation but is additionally involved in S-PTGS

[18,74]. Recently, HEN1 was biochemically characterized and

shown to possess a methyltransferase activity [13]. In vitro,

HEN1 methylates miRNA/miRNA* duplex at either the 2 0

or the 3 0-O-ribose position of the last nucleotide. It was further

shown that endogenous miRNAs are methylated in Arabidop-

sis [13]. This distinct feature of Arabidopsis miRNAs raised the

question whether the methyl group facilitates the recognition
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of miRNAs by AGO in the process of RISC assembly. How-

ever, in the in vitro RISC reconstitution system, non-methyl-

ated single-stranded siRNA can be efficiently bound to

Arabidopsis AGO1 and form a cleavage-competent RISC,

and the methylation of siRNAs does not have a positive effect

on the RISC activity [12]. So, the impact of methylation on the

miRNA function probably occurs at other steps during miR-

NA biogenesis and RISC assembly in vivo. It remains to be

tested whether HEN1 interacts with DCLs and has functions

other than its methyltransferase activity.

The possible roles of other Arabidopsis dsRBD proteins in

RNAi pathways have not been evaluated. By analogy with

Drosophila, it is reasonable to speculate that each DCL might

interact with a distinct dsRBD protein to carry out its

function.
6. Outlook

The RNAi machinery in plants responds to a variety of

RNAi triggers to produce a full spectrum of RNAi outcomes

through distinct pathways. Many key players in Arabidopsis

RNAi pathways have been identified through forward genetic

screens and reverse genetic analysis. However, our understand-

ing of the biochemical mechanisms of plant RNA silencing

pathways is still in its infancy. We have thus far been limited

to fitting genetic observations into biochemical models derived

from data from other organisms. Although plants seem to

share with other organisms many common aspects of the

RNAi machinery, plant RNAi has numerous distinctive fea-

tures, including transitivity, signal amplification, short- and

long-range signaling and TGS responses. Therefore, biochem-

ical characterization of RNAi components, especially those

unique to plants, is necessary to attain a fully elaborated model

of plant RNA silencing.
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