Riskily immortalization by telomerase

Senescence naturally limits the proliferation of mammalian cells in culture, possibly by shortening the telomere regions at the ends of chromosomes during cell division. In support of this idea, introducing TERT, the catalytic subunit of telomerase—the enzyme that maintains chromosome ends—into certain cell types can extend their lifespan and potentially immortalize them. It has been proposed that treatment with exogenous TERT might be useful for cell-based therapies by allowing indefinite expansion of normal human cells without damaging their genomes. But we show here that TERT-driven cell proliferation is not genoprotective because it is associated with activation of the c-myc oncogene.

Human mammary epithelial cell (HMEC) cultures normally stop dividing at 55–60 population doublings (PDs). We infected these cells with a human hTERT retrovirus at PD40 and maintained them until PD250 (ref. 4), then tested whether telomerase activity was essential for this immortalized phenotype by excising the hTERT retrovirus at PD150 using Cre recombinase. The resulting HMEC-Cre cells were maintained for at least another 20 population doublings and we saw no decline in growth rates in either pooled cells or individual clones. We used Southern blots of genomic DNA to confirm that TERT had been removed (data not shown). To our surprise, telomerase activity remained high compared with the control parental culture, which had undetectable activity (Fig. 1a).

Ectopic expression of c-myc activates telomerase in HMECs, and hTERT is a direct transcriptional target of c-Myc. To determine whether activation of c-myc was responsible for the telomerase activity found in our HMEC-Cre cultures, we measured the amount of Myc protein and found a two- to threefold increase in c-Myc compared with vector control cells (Fig. 1b). This is comparable to the amounts found in a culture immortalized by a myc-encoding retrovirus and in a breast-cancer cell line, HBL100 (Fig. 1b). The excision process did not itself cause this increase in c-Myc, as expression of c-myc was high before excision and also in clone 4, which still retained TERT (Fig. 1b).

We examined c-myc expression in HMEC-hTERT at different population doublings to determine when it was up-regulated and found that it increased between 107 and 135 population doublings (Fig. 1c). Also, GADD45 protein, whose expression is repressed by Myc, decreased markedly in HMEC–hTERT at PD135 and in HMEC–Cre at PD150 compared with vector control cells and HMEC–hTERT at PD70 (Fig. 1d). These results indicate that, under standard culture conditions, expansion of lifespan by telomerase selects for c-myc overexpression in HMECs.

Activation of the c-myc oncogene by overexpression, gene amplification, translocation and possibly mutation occurs in a wide variety of tumour types. We have shown that, although telomerase activation extends the lifespan of HMECs, it is also associated with overexpression of c-myc and so is not indefinitely genoprotective (even though the chromosome number in such cells is normal; data not shown). Paradoxically, the extension of lifespan that is conferred by TERT causes c-myc activation, and this immortilizes cells, in part by activating TERT expression. Furthermore, in HMEC cultures, TERT expression has little, if any, immortalizing potential until the p16 tumour-suppressor gene has been inactivated. These findings indicate that the use of hTERT for expansion of normal human cells for therapeutic purposes must be approached with caution.

Figure 1 c-myc activity is increased in immortalized HMEC–hTERT cells. HMEC 184 spiral K cells were provided by M. Stampfer. All HMEC-derived cultures were maintained in complete mammary epithelial growth medium (MEGM, Clonetics) under standard conditions. a, Telomerase activity in HMEC–Cre cells. We infected HMEC–hTERT cells at PD150 with retroviruses that direct the expression of hTERT in HMEC–Cre cells at PD150 and Cre recombinase, and generated a pool (lane 8) and seven clones (Cl, lanes 1–7). The pool and individual clones, except clone 4, lost the hTERT retroviral cassette. After maintaining cultures for a further 20 population doublings (PDs), we prepared cell lysates for TRAP assay. Lane 9, vector control cells at PD40; lane 10, non-excised HMEC–hTERT cells at PD150. Each lane corresponds to 10,000 cells. Results were similar in clones obtained after a second round of subcloning of Cre clone 6. b, Immunoblot using rabbit polyclonal anti-c-Myc antibody (H-282, Santa Cruz) showing c-Myc in cell lysates from vector-immortalized HMECs (lane 1), cells immortalized by ectopic expression of c-Myc (lane 2), hTERT-expressing cells at PD150 (lane 3) and PD150 (lane 4), Cre-immortalized HMEC–hTERT pool (lane 5) and clones 1, 4 and 7 (lanes 6–8), and tumour-cell line HBL100 (lane 9). c, Immunoblot showing the amount of c-Myc in cell lysates from vector control cells (lane 1) and HMEC–hTERT cells at different PDs (lanes 2–6). d, Immunoblot using rabbit polyclonal GADD45 antibody (H-165, Santa Cruz), showing GADD45 in cell lysates from vector control cells (lane 1), hTERT-expressing cells at PD70 (lane 2) and PD135 (lane 3), Cre-immortalized HMEC–hTERT at PD150 (lane 4) and cells immortalized by ectopic expression of c-Myc (lane 5). In b–d, TFIIIB protein was used to normalize loading.
brief communications

Jing Wang*, Gregory J. Hannon†, David H. Beach‡
*Genetica Inc., 1 Kendall Square, Building 600, Cambridge, Massachusetts 02139, USA
†Cold Spring Harbor Laboratory, PO Box 100, Cold Spring Harbor, New York 11743, USA
‡Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
e-mail: d.beach@ucl.ac.uk

Insect perception

Do cockroaches ‘know’ about fluid dynamics?

Animals use their senses to extract information from the world around them, so they need to be able to gauge the physical properties of their environment in order to build up an accurate perception of it. For example, a bat needs to ‘know’ the velocity of sound to estimate how far away an object is, although input to a sensory system may often exploit more complicated properties than this. Here we measure the response by the wind-sensing system of the American cockroach (Periplaneta americana) to a complex hydrodynamic flow. We find that the insect’s interneurons relay crucial information about the wind’s spectral properties, which may warn it of approaching predators.

The cockroach senses minute air movements using tiny hairs on two posterior appendages called cerci1. It can surmise the degree of turbulence from the form — in the form of an excess of low-frequency winds — may help it to survive.

D. Rinberg, H. Davidowitz
NEC Research Institute, 4 Independence Way, Princeton, New Jersey 08540-6634, USA
e-mail: dmnue@research.nj.nec.com

Figure 1 Average firing rate for random wind stimuli with different spectral parameters. Rates are shown for two typical interneurons (red crosses and blue diamonds) and for all interneurons together (orange circles). Insets show spectral density, S, as a function of frequency, f, indicating how the spectral parameters were changed. The frequency f_0 was held constant for these experiments at 10 Hz. The total power, which is directly proportional to the r.m.s. of the square of the wind velocity, V_{rms}, and the high-frequency ‘roll-off’ parameter, α, were changed independently. a, Firing rate as a function of total power of wind spectra with $\alpha = 3$. b, Firing rate as a function of α shows strong dependence on the extent of the high-frequency tail.